Perry Hart
Homotopy and K-theory seminar
Talk \#3
September 26, 2018

Abstract

More basic category theory. The main sources for these notes are nLab, Rognes, Ch. 3, and Peter

 Johnstone's Part III lecture notes (Michaelmas 2015), Ch. 1.Definition. Let \mathscr{C} and \mathscr{D} be categories and $F, G: \mathscr{C} \rightarrow \mathscr{D}$ be functors. A natural transformation $\phi: F \Rightarrow G$ is a function $A \mapsto f_{A}$ from ob \mathscr{C} to mor \mathscr{D} such that $f_{A}: F(A) \rightarrow G(A)$ and the following diagram commutes for any morphism $f: A \rightarrow B$.

In symbols, this may be written as $f_{B} f_{*}=f_{*} f_{A}$, where f_{A} and f_{B} are called the components of ϕ.
Remark 1. If every f_{A} is an isomorphism, then the $\left(f_{A}\right)^{-1}$ define a natural transformation between the same two functors.

Definition. Let $F, G, H: \mathscr{C} \rightarrow \mathscr{D}$ be functors. The identity natural transformation $\operatorname{Id}_{F}: F \Rightarrow F$ is given by $A \mapsto \operatorname{Id}_{F(A)}$. Moreover, given natural transformations $\phi: F \rightarrow G$ and $\psi: G \rightarrow H$, define the composite natural transformation $\psi \circ \phi$ by $A \mapsto(\psi \circ \phi)_{A}:=\psi_{A} \circ \phi_{A}$.
Definition. If each f_{A} is an isomorphism, then we call $\phi: F \cong G$ a natural isomorphism.
Remark 2. If \mathscr{D} is a groupoid, then ϕ must be a natural isomorphism.
Lemma 1. A natural transformation $\phi: F \Rightarrow G$ is a natural isomorphism iff it has an inverse $\phi^{-1}: G \Rightarrow F$.
Proof. This follows from Remark 1 and the definition of composite natural transformation.
Example 1. Let R and S be commutative rings. Any ring homomorphism $f: R \rightarrow S$ induces a ring homomorphism $\mathrm{GL}_{n}(f): \mathrm{GL}_{n}(R) \rightarrow \mathrm{GL}_{n}(S)$ which satisfies $f(\operatorname{det}(A))=\operatorname{det}\left(\mathrm{GL}_{n}(f)(A)\right)$. Viewing GL_{n} and $R \mapsto R^{*}$ as functors from Rng to $\mathbf{G r p}$ and $\operatorname{det}_{R}: \mathrm{GL}_{n}(R) \rightarrow R^{*}$ as a morphism in $\mathbf{G r p}$, we see that det_{R} defines a natural transformation $\phi: \mathrm{GL}_{n} \Rightarrow f^{*}$, where f^{*} denotes $f \upharpoonright_{R^{*}} R^{*} \rightarrow S^{*}$.

Example 2. Recall the power set functor P : Set \rightarrow Set given by $A \mapsto P(A)$ and $P g(S)=g(S)$ where $g: A \rightarrow B$ is a function and $S \subset A$. Then the function $f_{A}: A \rightarrow P(A)$ given by $a \mapsto\{a\}$ defines a natural transformation $\phi: \operatorname{Id}_{\text {Set }} \Rightarrow P$.

Example 3. Set $\mathscr{C}=\mathscr{D}=\mathbf{G r p}, F=\operatorname{Id}_{\mathscr{C}}$, and G equal to the abelianization functor. Then given a group H, the homomorphism $f: H \rightarrow H^{\text {ab }}$ defines a natural transformation $\phi: F \Rightarrow G$.

Example 4. Consider the preorders (P, \leq) and (Q, \leq) as small categories where functors $F, G: P \rightarrow Q$ are order-preserving functions. Then there is a unique natural transformation $\phi: F \Rightarrow G$ iff $F(x) \leq G(x)$ for every $x \in P$.

Example 5. The inversion isomorphism from a group G to $G^{\text {op }}$ defines a natural transformation $\phi: \operatorname{Id}_{\mathbf{G r p}} \Rightarrow$ (${ }^{\mathrm{op}}: \mathbf{G r p} \rightarrow \mathbf{G r p}$). In other words, G is naturally isomorphic to G^{op}.

Definition. Let \mathscr{C} and \mathscr{D} be categories with \mathscr{C} small. The functor category $\mathbf{F u n}(\mathscr{C}, \mathscr{D}):=\mathscr{D}^{\mathscr{C}}$ has functors $F: \mathscr{C} \rightarrow \mathscr{D}$ as objects and natural transformations as morphisms.

Remark 3. Given functors $F, G: \mathscr{C} \rightarrow \mathscr{D}$, why is the class of natural transformation $\phi: F \Rightarrow G$ necessarily a set? A G-Universe models ZFC, in particular Replacement.

Definition. Given a category \mathscr{C}, the arrow category $\operatorname{Ar}(\mathscr{C})$ of \mathscr{C} has as objects morphisms $f: X_{0} \rightarrow X_{1}$ in \mathscr{C} and as morphisms $M:\left(f: X_{0} \rightarrow X_{1}\right) \rightarrow\left(g: Y_{0} \rightarrow Y_{1}\right)$ the pairs $M=\left(M_{0}, M_{1}\right)$ of morphisms $M_{0}: X_{0} \rightarrow Y_{0}$ and $M_{1}: X_{1} \rightarrow Y_{1}$ such that the following commutes.

Remark 4. $\operatorname{Ar}(\mathscr{C}) \cong \operatorname{Fun}([1], \mathscr{C})$.
Lemma 2. $\operatorname{Fun}(\mathscr{C} \times \mathscr{D}, \mathscr{E}) \cong \operatorname{Fun}(\mathscr{C}, \operatorname{Fun}(\mathscr{D}, \mathscr{E}))$ via currying.
Definition. A functor $F: \mathscr{C} \rightarrow \mathscr{D}$ is an equivalence if there is a functor $G: \mathscr{D} \rightarrow \mathscr{C}$ such that $F \circ G \cong \operatorname{Id}_{\mathscr{C}}$ and $G \circ F \cong \mathrm{Id}_{\mathscr{D}}$. In this case, we say that F and G are equivalent categories. Moreover, we say that a property of \mathscr{C} is categorical if it is invariant under such equivalence.

Example 6. Let k be a field. Let the category Mat $_{k}$ have natural numbers as objects and morphisms $n \rightarrow p$ given by $p \times n$ matrices over k. Let fdMod denote the category of finite-dimensional vector spaces with linear maps as morphisms. These two categories are equivalent. Send nat n to k^{n} in one direction and the space V to $\operatorname{dim} V$ in the other direction.

Definition. A functor $F: \mathscr{C} \rightarrow \mathscr{D}$ is essentially surjective if for each object Z of \mathscr{D}, there is some object Y of \mathscr{C} such that $F(Y) \cong Z$.

Theorem 1. A functor is an equivalence iff it is full, faithful, and essentially surjective.
Proof. See Rognes, Theorem 3.2.10.
Definition. A skeleton of \mathscr{C} is a full subcategory $\mathscr{C}^{\prime} \subset \mathscr{C}$ such that each element of ob \mathscr{C} is isomorphic to exactly one element of ob \mathscr{C}^{\prime}.

Lemma 3. With notation as before, \mathscr{C}^{\prime} and \mathscr{C} are equivalent categories via the inclusion functor.
Proof. Apply Theorem 1.
Lemma 4. Any two skeleta $\mathscr{C}^{\prime}, \mathscr{C}^{\prime \prime} \subset \mathscr{C}$ are isomorphic.
Proof. Define $F: \mathscr{C}^{\prime} \rightarrow \mathscr{C}^{\prime \prime}$ by $F(X)=Y$ where $h_{X}: X \cong Y$ and $F(f)=h_{Y} \circ f \circ\left(h_{X}\right)^{-1}$ for $f \in \mathscr{C}(X, Y)$. To get F^{-1}, similarly define $G: \mathscr{C}^{\prime \prime} \rightarrow \mathscr{C}^{\prime}$ by choosing $\left(h_{X}\right)^{-1}$.

Remark 5. The previous two lemmas are equivalent to the axiom of choice, as is the statement that every category admits a skeleton.

Definition. Fix $X \in$ ob \mathscr{C}. Define the functor $\mathscr{Y}^{X}: \mathscr{C} \rightarrow$ Set by $Y \mapsto \mathscr{C}(X, Y)$ and mapping each morphism $g: Y \rightarrow Z$ to $g_{*}: \mathscr{C}(X, Y) \rightarrow \mathscr{C}(X, Z)$ given by $f \mapsto g f$. We call $\mathscr{C}(X,-):=\mathscr{Y}^{X}$ the set-valued functor corepresented by X in \mathscr{C}.

Definition. Fix $Z \in$ ob \mathscr{C}. Define the contravariant functor $\mathscr{Y}_{Z}: \mathscr{C}^{\text {op }} \rightarrow$ Set by $Y \mapsto \mathscr{C}(Y, Z)$ and mapping each morphism $f: X \rightarrow Y$ in \mathscr{C} to $f^{*}: \mathscr{C}(Y, Z) \rightarrow \mathscr{C}(X, Z)$ given by $g \mapsto g f$. We call $\mathscr{C}(-, Z):=\mathscr{Y}^{Z}$ the set-valued functor represented by Z in \mathscr{C}.

Definition. A functor $F: \mathscr{C} \times \mathscr{C}^{\prime} \rightarrow \mathscr{D}$ is also called a bifunctor.

Example 7. Let \mathscr{C} be a category. Define $\mathscr{C}(-,-): \mathscr{C}^{\text {op }} \times \mathscr{C} \rightarrow$ Set by $\left(X, X^{\prime}\right) \rightarrow \mathscr{C}\left(X, X^{\prime}\right)$ and mapping each morphism $\left(f, f^{\prime}\right):\left(X, X^{\prime}\right) \rightarrow\left(Y, Y^{\prime}\right)$ to $\mathscr{C}\left(f, f^{\prime}\right): \mathscr{C}\left(X, X^{\prime}\right) \rightarrow \mathscr{C}\left(Y, Y^{\prime}\right)$ given by $g \mapsto f^{\prime} g f$.
Definition. This is due to Dan Kan. Let \mathscr{C} and \mathscr{D} be categories and $F: \mathscr{C} \rightarrow \mathscr{D}$ and $G: \mathscr{D} \rightarrow \mathscr{C}$ be functors. Consider the set-valued bifunctors $\mathscr{D}(F(-),-), \mathscr{C}(-, G(-)): \mathscr{C}^{\mathrm{op}} \times \mathscr{D} \rightarrow$ Set. An adjunction between F and G is a natural isomorphism $\phi: \mathscr{D}(F(-),-) \Rightarrow \mathscr{C}(-, G(-))$. If such ϕ exists, then we say that (F, G) is an adjoint pair or functors. We also call F the left adjoint to G and G the right adjoint to F.

Remark 6. For each $c: X^{\prime} \rightarrow X$ and $d: Y \rightarrow Y^{\prime}$, the following commutes.

Example 8. The forgetful functor $U: \mathbf{G r p} \rightarrow$ Set admits a left adjoint $F:$ Set $\rightarrow \mathbf{G r p}$ which maps a set to the free group generated by A. The adjunction is the natural bijection $\boldsymbol{\operatorname { S e t }}(A, U(G)) \cong \mathbf{G r p}(F(A), G)$.

Example 9. Let R be a ring. The forgetful functor $U: R-\operatorname{Mod} \rightarrow$ Set admits a left adjoint $R(-)$ sending a set S to $\bigoplus_{s \in S} R$, the free R-module generated by S. The adjunction is the natural bijection $\operatorname{Set}(S, U(M)) \cong R-\operatorname{Mod}(R(S), M)$.

Remark 7. Rognes says that U does not admit a right adjoint in either of the previous two examples.
Example 10. The forgetful functor $U:$ Top \rightarrow Set has left adjoint that sends a set to the same set equipped with the discrete topology. It also has a right adjoint via the functor sending a set to the same set equipped with the indiscrete topology.

Example 11. Let CMon be the category of commutative monoids. Given $M \in$ ob CMon, we can construct the completion, or Grothendieck group, $G(M)$ on $M \times M$ as follows. Define addition on $M \times M$ component-wise and say that $\left(m_{1}, m_{2}\right) \sim\left(n_{1}, n_{2}\right)$ if $m_{1}+m_{2}+k=m_{2}+n_{1}+k$ for some $k \in M$. Set $G(M)$ as $(M \times M / \sim,+)$.

Then $G: \mathbf{C M o n} \rightarrow \mathbf{A b}$ is a functor. This is left adjoint to the forgetful functor $U: \mathbf{A b} \rightarrow \mathbf{C M o n}$.
Remark 8. Read Rognes, Definition 3.4.8, where he constructs the group completion $K(M)$ of noncommutative monoids M. It turns out that $K(M)$ is realized as the fundamental group of an important classifying space.

Definition. A subcategory $\mathscr{C} \subset \mathscr{D}$ is reflective if the inclusion functor is a right adjoint and is coreflective if the inclusion functor is a left adjoint.

Example 12. Ab $\subset \mathbf{C M o n d}$ is reflective by Example 11.
Example 13. Ab $\subset \mathbf{G r p}$ is reflective.
Example 14. Let $\mathbf{A b} \mathbf{b}_{T} \subset \mathbf{A b}$ denote the category of torsion groups. This is coreflective via the functor sending an abelian group to its torsion subgroup because any homomorphism $f: A \rightarrow B$ where A is torsion has $f(A) \subset B_{T}$.

Definition. Given an adjunction $\phi: \mathscr{D}(F(-),-) \Rightarrow \mathscr{C}(-, G(-))$, define the unit morphism

$$
\eta_{X}=\phi_{X, F(X)}\left(\operatorname{Id}_{F(X)}\right)
$$

and the counit morphism

$$
\epsilon_{Y}=\phi_{G(Y), Y}^{-1}\left(\operatorname{Id}_{G(Y)}\right)
$$

Lemma 5. Given an adjunction ϕ, the unit morphisms η_{X} define a natural transformation $\eta: \mathrm{Id}_{\mathscr{C}} \Rightarrow G F$ and the counit morphisms η_{Y} define a natural transformation $\epsilon: F G \Rightarrow \mathrm{Id}_{\mathscr{D}}$.

