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Abstract

More basic category theory. The main sources for these notes are nLab, Rognes, Ch. 3, and Peter
Johnstone’s Part III lecture notes (Michaelmas 2015), Ch. 1.

Definition. Let € and Z be categories and F, G : € — 2 be functors. A natural transformation ¢ : F = G
is a function A — f4 from ob @ to mor Z such that f4 : F(A) — G(A) and the following diagram commutes
for any morphism f: A — B.
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In symbols, this may be written as fgf. = f«fa, where f4 and fp are called the components of ¢.

Remark 1. If every fa is an isomorphism, then the (f4)~! define a natural transformation between the
same two functors.

Definition. Let F,G,H : € — 2 be functors. The identity natural transformation Idp : F' = F is given
by A+ Idp(4). Moreover, given natural transformations ¢ : F' — G and ¢ : G — H, define the composite
natural transformation Yo ¢p by A (Yo d)a =140 da.

Definition. If each f4 is an isomorphism, then we call ¢ : F' = G a natural isomorphism.

Remark 2. If Z is a groupoid, then ¢ must be a natural isomorphism.

Lemma 1. A natural transformation ¢ : F = G is a natural isomorphism iff it has an inverse ¢~! : G = F.
Proof. This follows from Remark 1 and the definition of composite natural transformation. O

Example 1. Let R and S be commutative rings. Any ring homomorphism f : R — S induces a ring
homomorphism GL,(f) : GL,(R) — GL,(S) which satisfies f(det(A)) = det(GL,(f)(A)). Viewing GL,
and R — R* as functors from Rng to Grp and detg : GL,(R) — R* as a morphism in Grp, we see that
detr defines a natural transformation ¢ : GL,, = f*, where f* denotes f [g+ R* — S*.
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Example 2. Recall the power set functor P : Set — Set given by A — P(A) and Pg(S) = ¢g(S) where
g: A — B is a function and S C A. Then the function f4 : A — P(A) given by a +— {a} defines a natural
transformation ¢ : Idget = P.

Example 3. Set ¥ = 2 = Grp, F = Id¢, and G equal to the abelianization functor. Then given a group
H, the homomorphism f : H — H?P defines a natural transformation ¢ : F = G.

Example 4. Consider the preorders (P, <) and (@, <) as small categories where functors F,G : P — @ are
order-preserving functions. Then there is a unique natural transformation ¢ : F = G iff F(z) < G(z) for
every x € P.

Example 5. The inversion isomorphism from a group G' to G°P defines a natural transformation ¢ : Idgrp =
(°P: Grp — Grp). In other words, G is naturally isomorphic to G°P.



Definition. Let ¥ and 2 be categories with ¢ small. The functor category Fun(%, %) := 2% has functors
F : € — 2 as objects and natural transformations as morphisms.

Remark 3. Given functors F,G : 4 — 2, why is the class of natural transformation ¢ : F' = G necessarily
a set? A G-Universe models ZFC, in particular Replacement.

Definition. Given a category ¢, the arrow category Ar(€) of € has as objects morphisms f : Xy — X,
in ¢ and as morphisms M : (f : Xo — X1) — (g9 : Yo — Y1) the pairs M = (Mp, M;) of morphisms
My : Xog — Yy and M7 : X7 — Y7 such that the following commutes.
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Remark 4. Ar(%¢) = Fun([1],%).
Lemma 2. Fun(% x 2,&) = Fun(%,Fun(Z, &)) via currying.

Definition. A functor F': ¢ — & is an equivalence if there is a functor G : Z — € such that F'o G = Idg
and G o F 2 Idg. In this case, we say that F and G are equivalent categories. Moreover, we say that a
property of € is categorical if it is invariant under such equivalence.

Example 6. Let k be a field. Let the category Mat; have natural numbers as objects and morphisms
n — p given by p x n matrices over k. Let fdMod denote the category of finite-dimensional vector spaces
with linear maps as morphisms. These two categories are equivalent. Send nat n to k™ in one direction and
the space V' to dim V' in the other direction.

Definition. A functor F' : € — 2 is essentially surjective if for each object Z of &, there is some object Y
of € such that F(Y) = Z.

Theorem 1. A functor is an equivalence iff it is full, faithful, and essentially surjective.
Proof. See Rognes, Theorem 3.2.10. O

Definition. A skeleton of € is a full subcategory €’ C € such that each element of ob ¥ is isomorphic to
exactly one element of ob%”.

Lemma 3. With notation as before, ¢’ and % are equivalent categories via the inclusion functor.
Proof. Apply Theorem 1. O
Lemma 4. Any two skeleta ¢, %" C € are isomorphic.

Proof. Define F : 6" — %" by F(X) =Y where hx : X Y and F(f) =hy o fo(hx) ! for f € €(X,Y).
To get F~!, similarly define G : €” — ¢’ by choosing (hx ). O

Remark 5. The previous two lemmas are equivalent to the axiom of choice, as is the statement that every
category admits a skeleton.

Definition. Fix X € ob%. Define the functor X : ¥ — Set by Y +— %(X,Y) and mapping each
morphism g: Y — Z to g, : €(X,Y) = €(X, Z) given by f s gf. We call €(X, ) := #X the set-valued
functor corepresented by X in €.

Definition. Fix Z € ob%. Define the contravariant functor %% : €°P — Set by Y — %€ (Y, Z) and mapping
each morphism f: X — Y in € to f*: €(Y,Z) — € (X, Z) given by g+ gf. We call € (—,Z) := #Z the
set-valued functor represented by Z in €.

Definition. A functor F: ¢ x ¥’ — & is also called a bifunctor.



Example 7. Let € be a category. Define € (—,—) : €°P x € — Set by (X, X’) —» ¢ (X, X’) and mapping
each morphism (f, ') : (X, X’) = Y, Y') to €(f, f') : €¢(X,X’) = €(Y,Y’) given by g — f'gf.

Definition. This is due to Dan Kan. Let ¥ and Z be categories and F' : ¥ — P and G : 9 — € be
functors. Consider the set-valued bifunctors Z(F(—),—),€(—,G(=)) : €°° x 2 — Set. An adjunction
between F' and G is a natural isomorphism ¢ : Z(F(—),—) = €(—,G(—)). If such ¢ exists, then we say
that (F, Q) is an adjoint pair or functors. We also call F' the left adjoint to G and G the right adjoint to F'.

Remark 6. For each ¢c: X’ — X and d : Y — Y’, the following commutes.
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Example 8. The forgetful functor U : Grp — Set admits a left adjoint F' : Set — Grp which maps a set
to the free group generated by A. The adjunction is the natural bijection Set(A,U(G)) = Grp(F(4),G).

Example 9. Let R be a ring. The forgetful functor U : R — Mod — Set admits a left adjoint R(—)
sending a set S to P, g R, the free R-module generated by S. The adjunction is the natural bijection
Set(S,U(M)) =2 R— Mod(R(S), M).

Remark 7. Rognes says that U does not admit a right adjoint in either of the previous two examples.

Example 10. The forgetful functor U : Top — Set has left adjoint that sends a set to the same set equipped
with the discrete topology. It also has a right adjoint via the functor sending a set to the same set equipped
with the indiscrete topology.

Example 11. Let CMon be the category of commutative monoids. Given M € ob CMon, we can con-
struct the completion, or Grothendieck group, G(M) on M x M as follows. Define addition on M x M
component-wise and say that (mi,ma) ~ (ny,n2) if my +ma +k = ms +ny + k for some k € M. Set G(M)

as (M xM, +).

Then G : CMon — Ab is a functor. This is left adjoint to the forgetful functor U : Ab — CMon.

Remark 8. Read Rognes, Definition 3.4.8, where he constructs the group completion K (M) of non-
commutative monoids M. It turns out that K (M) is realized as the fundamental group of an important
classifying space.

Definition. A subcategory ¥ C 2 is reflective if the inclusion functor is a right adjoint and is coreflective
if the inclusion functor is a left adjoint.

Example 12. Ab C CMond is reflective by Example 11.
Example 13. Ab C Grp is reflective.

Example 14. Let Aby C Ab denote the category of torsion groups. This is coreflective via the functor
sending an abelian group to its torsion subgroup because any homomorphism f : A — B where A is torsion
has f(A) C Br.

Definition. Given an adjunction ¢ : Z(F(—),—) = €(—,G(-)), define the unit morphism
nx = ¢x,rx)Idrx))

and the counit morphism
€y = qbg;%y)}y (IdG(Y))'

Lemma 5. Given an adjunction ¢, the unit morphisms nx define a natural transformation 7 : Idy = GF
and the counit morphisms 7y define a natural transformation € : FG = Idg.



